This function provides a plot that displays the frequencies, percentages, cumulative percentages or densities of the individual causal association (ICA;
# S3 method for ICA.BinBin
plot(x, R2_H=TRUE, R_H=FALSE, Theta_T=FALSE,
Theta_S=FALSE, Type="Density", Labels=FALSE, Xlab.R2_H,
Main.R2_H, Xlab.R_H, Main.R_H, Xlab.Theta_S, Main.Theta_S, Xlab.Theta_T,
Main.Theta_T, Cex.Legend=1, Cex.Position="topright",
col, Par=par(oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)), ylim, ...)
An object of class ICA.BinBin
. See ICA.BinBin
.
Logical. When R2_H=TRUE
, a plot of the TRUE
.
Logical. When R_H=TRUE
, a plot of the FALSE
.
Logical. When Theta_T=TRUE
, a plot of the FALSE
.
Logical. When Theta_S=TRUE
, a plot of the FALSE
.
The type of plot that is produced. When Type="Freq"
or Type="Percent"
, the Y-axis shows frequencies or percentages of Type="CumPerc"
, the Y-axis shows cumulative percentages. When Type="Density"
, the density is shown.
When the fitted object of class ICA.BinBin
was obtained using a general analysis (i.e., using the Monotonicity=c("General")
argument in the function call), sperate plots are provided for the different monotonicity scenarios. Default "Density"
.
Logical. When Labels=TRUE
, the percentage of FALSE
.
The legend of the X-axis of the
The title of the
The legend of the X-axis of the
The title of the
The legend of the X-axis of the
The title of the
The legend of the X-axis of the
The title of the
The size of the legend when Type="All.Densities"
is used. Default Cex.Legend=1
.
The position of the legend, Cex.Position="topright"
or Cex.Position="topleft"
. Default Cex.Position="topright"
.
The color of the bins. Default col <- c(8)
.
Graphical parameters for the plot. Default par(oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1))
.
The (min, max) values for the Y-axis
.
Extra graphical parameters to be passed to hist()
.
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs
Alonso, A., Van der Elst, W., Molenberghs, G., Buyse, M., & Burzykowski, T. (submitted). A causal-inference approach for the validation of surrogate endpoints based on information theory and sensitivity analysis.
ICA.BinBin
# Compute R2_H given the marginals,
# assuming monotonicity for S and T and grids
# pi_0111=seq(0, 1, by=.001) and
# pi_1100=seq(0, 1, by=.001)
ICA <- ICA.BinBin.Grid.Sample(pi1_1_=0.261, pi1_0_=0.285,
pi_1_1=0.637, pi_1_0=0.078, pi0_1_=0.134, pi_0_1=0.127,
Monotonicity=c("General"), M=2500, Seed=1)
# Plot the results (density of R2_H):
plot(ICA, Type="Density", R2_H=TRUE, R_H=FALSE,
Theta_T=FALSE, Theta_S=FALSE)
Run the code above in your browser using DataLab